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ABSTRACT 

Ambient vibration instrumentation is a powerful additional tool to better understand the seismic behavior of a structure and 
consequently better asses its seismic behavior during a major earthquake. This paper presents the global methodology at 
Hydro-Québec in performing ambient vibration tests, its advantages and disadvantages when compared to more sophisticated 
in-situ measurements and some improvements that allow measuring clearer signals. Two examples of how those measures are 
used in ongoing studies are presented.   
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INTRODUCTION 

Many dams have been constructed in highly seismic regions around the world. During their design, no or little considerations 
were given for seismic loads. Also, numerous aging dams have undergone deterioration since their construction caused for 
example by thermal loading and/or concrete swelling (Alkali-Aggregate Reaction) in the case of concrete dams.  

Because failure of a dam can lead to catastrophic human and economic losses, some countries have created regulatory 
agencies that require dam owners to perform periodic safety assessment of their facilities. In Québec, the regulation on dam 
safety, effective since April 2002, imposes the verification of the seismic safety of dams. In 2002, the Québec Dam Safety 
Act imposes to dam owners of high-capacity dams to undergo a safety reviews every ten years for each dam. In this 
evaluation, seismic analysis has to be performed to verify that the behavior under such extreme loading is adequate. Also, 
many dam owners are undertaking major rehabilitation projects to expand the lifespan of their infrastructures. For these 
projects, state-of-the art seismic analyses have to be performed to validate that the modifications or reinforcements required 
will allow the dams to withstand a major earthquake. Those analyses should to take into account the effect of aging which 
adds considerable uncertainty in already complex studies. 

During the last decades, there has been a growing interest in the use of geophysics solutions to estimate dynamic properties 
(natural frequencies, mode shapes and damping ratio) of infrastructures such as building, bridges, and dams. These structural 
properties can also be obtained by a modal analysis of the structure. The comparison between in situ and numerical results 
allow validating that the model adequately accounts for mass and rigidity distribution. In other term, this validation assures 
that at least the linear behavior of the structure is well captured in a seismic analysis allowing an excellent first validation. In 
2015, Hydro-Québec has started investigating the use of ambient vibrations instrumentation as an additional tool to feed 
ongoing seismic reevaluation studies as legally required or for particular studies such as major rehabilitation projects of 
ageing dams. This paper presents the global methodology in performing ambient vibration tests, its advantages and 
disadvantages when compared to more sophisticated in-situ measurements and some improvements that allow measuring 
clearer signals. Two examples of how those measures are used in ongoing studies are given.   

AMBIENT VIBRATION ANALYSIS 

Overview of ambient vibration and measuring technics 

Ambient vibration tests consist in the analysis of the effect of seismic noise on a structure. The seismic noise or micro 
tremors are mainly caused by human activities (ex. machinery), wind and, in the case of dams, waves propagating in the 
reservoir. These micro tremors, of very small amplitude, excite the structure which will amplify certain frequencies 
depending on its dynamic properties. By analyzing recorded signals where dynamic amplification should be important (ex. at 
crest of a dam for fundamental modes as shown in Figure 1) it is possible to identify the natural frequencies of the structure 
for which peak amplitudes are found in the frequency domain. 
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good results were obtained using this technic to retrieve the effect of none white noise. HVSR results obtained at the center of 
the crest are shown in Figure 13 and are in agreement with those obtained with the transfer function method. 

  

Figure 11: A) Plan view of the Denis-Perron dam, B) Longitudinal section of the valley in the central dam axis 

 

Figure 12: Transfer functions calculated from ambient noise measurements of top of the Denis-Perron dam 

 

Figure 13: H/V ratio – Measure at center of crest: -Transversal direction; - Longitudinal direction  

For all measurements on the top of the crest, fundamental vibration frequencies in the transverse direction varies between 
1.69 Hz and 1.72 Hz with a slight increase in the frequency near each bank abutment (PM 1 + 385 and PM 1 + 410). The 
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fundamental vibration frequencies in the longitudinal direction vary between 2.07 Hz and 2.10 Hz with also a slight increase 
in the frequency near each left bank abutment. In the vertical direction, fundamental frequency is about 2.59. The latter is not 
perceptible for signals (PM 1 + 110 and PM 1 + 135) near the reference point (PM 1 + 085, T3_IN3) on the right abutment. 
Fundamental vibration frequencies in the transverse direction have a greater relative amplification than in the other 
directions. Amplitudes of the fundamental vibration frequencies in the vertical direction are significant relative to horizontal 
frequencies, particularly compared to the longitudinal direction. In our understanding, this is a 3D effect (called site effect) 
resulting from the geometry of the steep valley. This observation is consistent with the vertical peak acceleration observed by 
[10] for Denis-Perron earthquakes event and by [11] for seismological data measured on the La Villita dam, particularly for 
the weakest earthquake. Fundamental vibration frequencies determined from the ambient noise measurements on the dam 
crest are within the range of the fundamental vibration frequencies determined from earthquakes event as presented by [10]. 

CONCLUSIONS 

After 3 years experimenting the use of ambient vibration measurements to feed ongoing studies, this technology has clearly 
become an important additional tool to better understand the behavior of our structures and at least validate that we are able 
to adequately predict the linear seismic behavior of our structures.  The use of a single station has proven to be sufficient in 
most case to output the fundamental modes of a structure and this for both concrete and earth dams of various heights and 
geometry. The advantage of the single station method is the simplicity of the setup that allows taking measurements during a 
normal inspection of a dam. Results can be obtained quickly with a simple treatment of the measured signals. The downside 
of this method is that mode identification can be difficult in some cases as mode shape identification is not possible. 
Nonetheless, the simplicity of the geometry of most of our dams allows usually a very good estimation of the natural 
frequencies using analytical/empirical formulas or finite element analysis. When great differences are obtained, modelling 
hypothesis should be reviewed (ex. 2D vs 3D; boundary conditions; mechanical properties). After the successful use of a 
single station in our practice, Hydro-Québec is starting to investigate the use of an array of sensors on both concrete and earth 
dams.  
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